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We consider a viscous, incompressible fluid confined in a narrow annular channel
rotating rapidly about its axis of symmetry with angular velocity Ω that itself
precesses slowly about an axis fixed in an inertial frame. The precessional problem
is characterized by three parameters: the Ekman number E, the Poincaré number ε

and the aspect ratio of the channel Γ . Dependent upon the size of Γ , precessionally
driven flows can be either resonant or non-resonant with the Poincaré forcing. By
assuming that it is the viscous effect, rather than the nonlinear effect, that plays an
essential role at exact resonance, two asymptotic expressions for ε � 1 and E � 1
describing the single and double inertial-mode resonance are derived under the non-
slip boundary condition. An asymptotic expression describing non-resonant precessing
flows is also derived. Further studies based on numerical integrations, including two-
dimensional linear analysis and direct three-dimensional nonlinear simulation, show
a satisfactory quantitative agreement between the three asymptotic expressions and
the fuller numerics for small and moderate Reynolds numbers at an asymptotically
small E. The transition from two-dimensional precessing flow to three-dimensional
small-scale turbulence for large Reynolds numbers is also investigated.

1. Introduction
It has been conjectured that precessionally driven flows in the Earth’s fluid core may

be sufficiently strong and complex to be responsible for generating and maintaining
the geomagnetic field (Bullard 1949). This conjecture has been supported by laboratory
and numerical experiments demonstrating that wave-like instabilities and transition to
turbulent flows can occur in precessing spherical/spheroidal systems (see, for example,
Malkus 1968; Kerswell 1993; Vanyo et al. 1995; Hollerbach & Kerswell 1995; Tilgner
& Busse 2001; Noir, Jault, & Cardin 2001; Noir et al. 2003) and in precessing
cylinders (see, for example, Gans 1970; Malkus 1989; Manasseh 1992; Kobine 1995;
Meunier et al. 2008), by the theoretical estimate of abundant precessional energy
(see, for example, Kerswell 1996) and by convincing numerical experiments showing
that precession-driven flows can indeed generate and sustain magnetic fields (see, for
example, Tilgner 2005, 2007; Wu & Roberts 2008, 2009). Although the time scale of
precessionally driven flows is usually much shorter compared with that of planetary
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convection, the persistent nature of precession makes it significant in many problems
of geophysical and astrophysical fluid dynamics.

Motivated by the desire to understand the fundamental dynamics and physics,
Mason & Kerswell (2002) carried out an important study of precessionally driven
flow in planar geometry, the simplest of all existing models of the precessional
problem. They considered a viscous, incompressible fluid confined between two
infinitely extended parallel plane boundaries that rotate rapidly about their normal
with angular velocity Ω that itself precesses slowly about a horizontal axis fixed in
space with angular velocity Ωp . Note that there is no essential loss of generality in
assuming that Ω is perpendicular to Ωp because any component of Ωp parallel to
Ω may be absorbed into a redefined Ω (Wu & Roberts 2009). In unbounded planar
geometry, the precessional motion of the two parallel boundaries drives flows against
viscous dissipation. When the precessional rate increases, their numerical simulation
shows that the precessionally driven flow changes from two-dimensional laminar to
three-dimensional chaotic. To avoid the thin viscous boundary layers on the top and
bottom of the plane layer, which are numerically expensive to resolve, the stress-free
boundary condition is employed in their numerical study. In a further development
of the same planar geometry model, Wu & Roberts (2008) include the effects of a
self-generated magnetic field, demonstrating that, if the fluid is sufficiently electrically
conducting, the precessing flow at a sufficiently large precessional rate can support
dynamo action.

Motivated by possible geophysical and astrophysical applications, annular geometry
has been widely employed to study/mimic fluid motion taking place in the equatorial
region or low latitudes of rotating spherical shells (see, for example, Gilman 1973;
Busse 1994; Jones, Rotvig & Abdulrahman 2003; Eccles et al. 2009). There are several
reasons why annular geometry has been used in modelling rotating flows. First,
in comparison to either spherical-shell geometry or unbounded planar geometry,
the rotating annular configuration is readily experimentally realizable (see, for
example, Davies-Jones & Gilman 1971; Busse 1994; Eccles et al. 2009). Second,
as a consequence of rapid rotation, the key dynamics in the equatorial region would
be different from that in the polar regions in rotating spherical shells. Third, the
mathematical degeneracy characterizing unbounded planar geometry is removed by
the presence of two lateral sidewalls (see, for example, Davies-Jones & Gilman 1971).
At the same time, the mathematical simplicity and clarity of planar geometry – using
local Cartesian coordinates – remain unchanged in annular geometry when the gap
width of an annulus is sufficiently small in comparison with its radius. This narrow-gap
approximation has been usually employed in the theoretical studies of fluid dynamics
in a rotating annulus (see, for example, Davies-Jones & Gilman 1971; Jones et al. 2003;
Busse 2005). A major advantage of neglecting the curvature effect in a narrow annulus
is that a relatively simple analytical description of fluid motion is permitted, offering
a helpful insight into the essential dynamics of rotating flows (see, for example, Busse
2005; Liao, Zhang & Chang 2006). This approximation is supported by both the nu-
merical and experimental studies on convection in a rotating annulus, demonstrating
that the primary features of the flows in a narrow-gap annulus with the curvature effect
are captured by a narrow-gap annulus that uses the narrow-gap approximation to
neglect the curvature effect (see, for example, Busse 1994; Li et al. 2008). Although this
study is primarily motivated by possible geophysical and astrophysical applications,
the problem of precessionally driven flows in annular/cylindrical geometry may have
industrial applications because propellant tanks in a flying spacecraft can be subject
to the precessional forcing (see, for example, Vanyo 1993).
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The primary objective of the present study is to understand, through both
asymptotic and numerical analyses, the fundamental dynamics of the precessionally
driven flow of a viscous, incompressible fluid confined in a rotating narrow annulus
using the narrow-gap approximation, the same geometry proposed by Davies-Jones &
Gilman (1971) and Gilman (1973) (see also Busse 2005). The narrow annular channel
rotates rapidly about its axis of symmetry with angular velocity Ω that itself precesses
slowly about an axis that is fixed in space and perpendicular to Ω . A non-slip velocity
boundary condition, appropriate for experimental studies of the problem, will be used.
A major advantage of the narrow annular configuration is that it is approximately
realizable in laboratory experiments (Davies-Jones & Gilman 1971; Gilman 1973).
A major disadvantage of the realistic non-slip condition is that the thin Ekman
boundary layers are numerically expensive to resolve. This is, however, rewarded
by the benefits that the non-slip precessing solutions are directly comparable with
experimental results and, perhaps more significantly, that the Ekman boundary layers
associated with the non-slip condition play a central role at resonance (Roberts &
Stewartson 1965).

In addition to the Ekman number E and the Poincaré number ε in the planar
precessional problem (Mason & Kerswell 2002; Wu & Roberts 2008), the existence
of four rigid walls in channel geometry not only introduces a new parameter Γ ,
the aspect ratio of the depth to the width of a channel, but also introduces new
dynamics into the precessional problem. Depending upon the size of the aspect ratio
Γ , the precessing flow in a channel can be divided into three different categories:
(a) a single principal inertial mode is at exact resonance with the Poincaré forcing;
(b) two principal inertial modes are at exact resonance with the Poincaré forcing; and
(c) multiple inertial modes are excited at non-resonance. When the precessional forcing
is small, we shall derive three asymptotic expressions that describe precessionally
driven flows of the three different types in a channel with the non-slip boundary
condition. We shall demonstrate that the viscous boundary layers, in connection with
the non-slip boundary condition, are physically and mathematically important in
determining the primary properties, such as the amplitude, of a precessing flow at
exact resonance. We shall also perform two-dimensional linear numerical analysis
and fully three-dimensional nonlinear simulation, showing a satisfactory quantitative
agreement between the asymptotic expressions and the numerical analyses for small
and moderate Reynolds numbers. Moreover, we shall study the transition from
two-dimensional precessing flow to three-dimensional small-scale turbulence for
large Reynolds numbers, revealing a breakdown of the laminar flow to small-scale
turbulence at a moderate precessional rate at exact resonance.

In what follows we shall begin by presenting the mathematical equations of the
problem in § 2. The asymptotic analysis for the three types of precessionally driven
flows is discussed in § 3 while the two-dimensional linear numerical analysis and
three-dimensional nonlinear simulation are presented in § 4. A summary and some
remarks are given in § 5.

2. Mathematical formulation
Consider a viscous, incompressible fluid occupying an annular channel with inner

radius rid , outer radius rod and depth d . A parameter Γ is introduced to denote
the aspect ratio of the channel Γ = (rod − rid)/d . When the gap of the annulus is
sufficiently small, i.e. Γ/ro � 1, which will be referred to as a narrow annular channel
(Busse 2005), the effect of the curvature can be neglected by using the small-gap
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approximation with the periodic condition along the channel (Gilman 1973; Busse
2005). The configuration of the narrow annular channel will be adopted in the present
study of precessionally driven flows.

The narrow annular channel rotates rapidly with angular velocity ẑΩ about its
axis of symmetry and precesses slowly about an axis that is perpendicular to ẑ and
fixed in space, which is similar to that in the precessional problem of planar geometry
(Mason & Kerswell 2002; Wu & Roberts 2008). In this paper, we shall call the
ẑ-direction ‘vertical’ while the x- and y-directions, perpendicular to ẑ, are termed
‘horizonal’ (Wu & Roberts 2008). We shall also adopt a frame of reference that is
attached to the precessing channel and in which the boundaries of the channel are
at rest (hereinafter referred to as the body or mantle frame). In the body frame of
reference, we choose a Cartesian coordinate system in that the fluid cavity of the
channel is defined by 0 � y � Γ d , 0 � z � d and −∞ < x < ∞. The four walls of
the channel are y =0 located at one vertical wall (called ‘outer sidewall’), y =Γ d at
the another vertical wall (called ‘inner sidewall’), while z = 0 at one horizonal wall
(called ‘bottom’) and z = d at the another horizontal wall (called ‘top’). Moreover, the
x-direction, which is parallel to the four walls, will be termed ‘azimuthal’. The above
terminology is introduced because of its correspondence with an annular channel
under the small-gap approximation (Gilman 1973; Busse 2005). In the body frame of
reference, the precessionally driven flow in an incompressible fluid is governed by the
two equations (see, for example, Greenspan 1968)

∂u
∂t

+ u · ∇u + 2(Ω ẑ + Ωp) × u = − 1

ρ
∇p + ν∇2u + r ×

[
Ωp × (Ω ẑ)

]
, (2.1)

∇ · u = 0, (2.2)

where t is time, ρ is the fluid density, Ωp represents the precession vector which is
fixed in space, p is a reduced pressure and r is the position vector; u is the three-
dimensional velocity field u = (ux, uy, uz) with the corresponding unit vectors (x̂, ŷ, ẑ).
The last term on the right-hand side of (2.1) is known as the Poincaré forcing which
drives precessional flows against viscous dissipation. In the Cartesian coordinates
attached to the channel, the precession vector Ωp is time dependent and given by

Ωp = (εΩ) (x̂ cos Ωt − ŷ sinΩt) , (2.3)

whose amplitude is |Ωp| = εΩ . We shall employ the depth d as the length scale, Ω−1

as the unit of time and ρd2Ω2 as the unit of pressure, which lead to the dimensionless
governing equations (Mason & Kerswell 2002; Wu & Roberts 2008):

∂u
∂t

+ u · ∇u + 2 ẑ × u + ∇p = E∇2u + 2εu × (x̂ cos t − ŷ sin t)

+ 2εz (x̂ cos t − ŷ sin t) , (2.4)

∇ · u = 0, (2.5)

where the Ekman number, E = ν/Ωd2, provides the measure of relative importance
between the typical viscous force and the Coriolis force, and the Poincaré number
ε = |Ωp|/Ω quantifies the strength of the precessional forcing (Wu & Roberts 2008). In
comparison with the pressure in (2.1), the pressure p in (2.4) is modified by including
a potential term from the Poincaré forcing. We shall also introduce the Reynolds
number Re (Meunier et al. 2008) defined as

Re =
(εΩ)d2

ν
=

ε

E
.
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In the body frame, the flow on the bounding surface of a precessing channel is at
rest, which requires

n̂ · u = n̂ × u = 0 (2.6)

on the four boundaries of a channel – the bottom at z = 0, the top at z =1, the outer
sidewall at y = 0 and the inner sidewall at y = Γ – where n̂ denotes the unit normal
of the bounding surface. The problem defined by (2.4)–(2.5) subject to the boundary
conditions (2.6) will be solved asymptotically for an arbitrarily small but fixed E with
small and moderate Reynolds numbers in § 3 and numerically for both weakly and
strongly precessing flows in § 4.

3. Asymptotic analysis
When the Poincaré number ε is sufficiently small at a fixed small E, we may assume

that the higher-order terms in (2.4), u · ∇u and εu× (x̂ cos t − ŷ sin t), can be neglected,
leading to

∂u
∂t

+ 2 ẑ × u + ∇p = E∇2u + 2εz (x̂ cos t − ŷ sin t) , (3.1)

∇ · u = 0, (3.2)

solutions of which, as we shall demonstrate later, provide a satisfactory quantitative
agreement with the fully nonlinear solutions in the range 0 < Re � O(102) for the
exactly resonant precessing flow and in the range 0 < Re � O(103) for the non-
resonant flow. At first glance, −2εz (x̂ sin t + ŷ cos t) satisfies (3.1) with the viscous
term omitted and, hence, may represent the mainstream solution of the problem.
However, it cannot be the mainstream solution because the inviscid boundary
condition at the sidewalls is not satisfied.

In our asymptotic analysis, we postulate the following underlying physics and
dynamics for a weakly precessing flow in a channel: the precessing flow can be
approximated by either a single inviscid inertial mode or several inviscid inertial
modes which is/are selected by a combined influence of the geometric factor (Γ )
and the spatial–temporal structure of the Poincaré forcing, modified by viscous effects
mainly via the viscous boundary layers on the four bounding surfaces and energetically
driven by precession against viscous dissipation. It follows that our asymptotic analysis
with the non-slip boundary condition will be based on three hypotheses: (i) the
weakly precessing flow is oscillatory and axisymmetric (∂/∂x = 0) because the Poincaré
forcing, the final term in (2.4), is oscillatory and independent of the azimuthal variable
x; (ii) the leading-order interior precessing flow can be represented by either a single
inertial mode or by a combination of several inertial modes whose explicit analytical
expressions in the inviscid limit are available; and (iii) there exist strong viscous
boundary layers on the bounding surface of the channel that either control (in the
case of resonant excitation) or modify (in the case of non-resonant excitation) the
leading-order precessing flow. In connection with hypothesis (ii), an axisymmetric
inertial mode in the inviscid limit is governed by the two equations

2iσjnujn + 2 ẑ × ujn + ∇pjn = 0, (3.3)

∇ · ujn = 0, (3.4)

where i =
√

−1 and σjn is the half-frequency of an inertial mode, subject to the
condition of vanishing normal flow

n̂ · ûjn = 0 (3.5)
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at the bounding surface of the channel. Two integer numbers, j and n, describe the
radial and vertical structures of an inertial mode, respectively. The half-frequency of
an axisymmetric inertial mode in (3.3), σjn, is given by

σjn =
n√

n2 + (j/Γ )2
, for j = 1, 2, . . . , n = ±1, ±2, . . . , (3.6)

satisfying the bound 0 < |σjn| < 1 (see, for example, Liao & Zhang 2009), while explicit
solutions for the pressure pjn and the velocity ujn can be written in the complex form

pjn(y, z) = cos

(
jπy

Γ

)
cos nπz, (3.7)

x̂ · ujn(y, z) =
jπ

2Γ
(
1 − σ 2

jn

) [
sin

(
jπy

Γ

)
cos nπz

]
, (3.8)

ŷ · ujn(y, z) =
iσjnjπ

2Γ
(
1 − σ 2

jn

) [
sin

(
jπy

Γ

)
cos nπz

]
, (3.9)

ẑ · ujn(y, z) = − inπ

2σjn

[
cos

(
jπy

Γ

)
sin nπz

]
. (3.10)

It is worth mentioning that the x-component of the inertial modes, given by (3.8),
automatically satisfies the no-slip boundary condition at the sidewalls of the channel.
In consequence, the viscous boundary-layer adjustments for this component at
the sidewalls are not required, which simplifies the boundary-layer analysis. In
(3.7)–(3.10), the aspect ratio Γ represents a key parameter in controlling the primary
character of precessionally driven flows. We shall concentrate on the regime of
moderate aspect ratio with E1/2 � Γ � O(1).

It is of primary importance to note that strong resonance takes place when the
aspect ratio Γ =

√
3j/3n, (i.e. when σjn = 1/2) for small values of the wavenumbers

n and j at a fixed small E. Because of the vertical symmetry property of the
Poincaré forcing, however, the vertical wavenumber n must be odd at resonance. For
example, all the inertial modes with n= 2K − 1 and j =2K − 1, K = 1, 2, 3, . . ., are
resonant at Γ =1/

√
3. In other words, it is always multiply resonant. However, the

higher-order modes are viscously damped by a factor of O(K2) and, consequently,
only the inertial modes with lowest orders in j and n are the most resonant and
physically significant. It follows that as the aspect ratio Γ varies at a fixed small
E, precessionally driven flows may be divided into three different categories: (i)
the double-inertial-mode resonance at Γ = 1/

√
3 where two principal inertial modes,

(j = 1, n =1) and (j = 3, n =3), are significant at exact resonance with the Poincaré
forcing; (ii) the single-inertial-mode resonance at Γ =

√
3 where only a single inertial

mode (j = 3, n = 1) is significant at exact resonance, for which the higher modes
like (j = 9, n =3) make a negligible contribution; and (iii) multiple-inertial-mode
excitation at non-resonance when |Γ − 1/

√
3| � E1/2 or |Γ −

√
3| � E1/2, in which a

large number of inertial modes may be excited by the Poincaré forcing. We shall not
consider the weak resonance taking place when Γ � 1 with large values of n and j .
Evidently, the simplest asymptotic solution is offered by the single-mode resonance
at Γ =

√
3, which will be discussed first.

3.1. Single-inertial-mode resonance

In a precessing channel with aspect ratio Γ =
√

3, an asymptotic solution u for a
weakly precessing flow with ε � 1 at a fixed small E can be, following the three
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hypotheses, separated into a single-inertial-mode interior flow u31 and the corres-
ponding boundary-layer correction ũ31, together with a weak geostrophic flow uG. An
asymptotic expansion for the velocity u and the reduced pressure p takes the form

u(y, z, t) =
[(

uG + ũG

)
+ (C31u31 + û) + ũ31

]
eit , (3.11)

p(y, z, t) =
[(

pG + p̃G

)
+ (C31p31 + p̂) + p̃31

]
eit , (3.12)

where C31 is an unknown complex number to be determined in the second-order
problem, |uG| =O(ε) denotes the interior geostrophic flow while |ũG| =O(ε)
corresponds to its boundary correction, the single inertial mode (u31, p31) for
the interior precessing flow, given by (3.7)–(3.10) with j =3 and n=1 and with
|C31u31| =O(ε/E1/2), is corrected by the viscous boundary layer (ũ31, p̃31) with
|ũ31| = O(ε/E1/2), which generates, through the boundary flux, the secondary interior
flow, (û, p̂), where |û| =O(ε). Note that the interior geostrophic flow, uG, is
independent of z (see, for example, Greenspan 1968).

Four sets of equations – describing the boundary-layer flow ũ31, the secondary
interior flow û, the interior geostrophic flow uG, the boundary geostrophic flow ũG –
can be derived after substituting the asymptotic expansions (3.11) and (3.12) into (3.1)
and (3.2). First, the viscous boundary-layer flow ũ31 is governed by

iũ31 + 2 ẑ × ũ31 + n̂ · ∇p̃31 =
∂2ũ31

∂ξ 2
, (3.13)

n̂ · ∇ ×
(
n̂ × ũ31

)
=

∂
(
n̂ · ũ31

)
∂ξ

, (3.14)

subject to the boundary condition

n̂ ×
(
ũ31 + C31u31

)
= 0, (3.15)

which ensures that the tangential velocity vanishes at the bounding surface of the
container. In (3.13) and (3.14), ξ denotes the stretched boundary-layer variable:
ξ = zE−1/2 on the bottom at z = 0 (which will be referred to as S1), ξ = (1 − z)E−1/2

on the top at z = 1 (referred to as S2), ξ = yE−1/2 for the boundary layer on the outer
sidewall at y = 0 (referred to as S3) and ξ = (Γ − y)E−1/2 on the inner sidewall at
y = Γ (referred to as S4). Second, the secondary interior flow is described by

iû + 2 ẑ × û + ∇p̂ = EC31∇2u31 + 2εz (x̂ + i ŷ) , (3.16)

∇ · û = 0, (3.17)

where the term E∇2u31 represents the interior viscous dissipation, which is retained
because it can be readily incorporated and may make a significant contribution
(Zhang & Liao 2008). Linking the boundary-layer flow ũ31 to the secondary interior
flow û is the normal component of the mass flux at the edge of the viscous boundary
layer

n̂ · û = E1/2

∫ ∞

0

n̂ · ∇ ×
(
n̂ × ũ31

)
dξ, (3.18)

providing the asymptotic matching condition required in evaluating the solvability
condition for (3.16)–(3.17) which can be obtained by multiplying (3.16) with the
complex conjugate of u31 and then integrating the resulting equation over the channel.
Third, an equation for the interior geostrophic flow uG can be derived by inserting
(3.11) and (3.12) into (3.1) and then integrating the azimuthal component of the



Precession in narrow annular channels 123

resulting equation: ∫ 1

0

ix̂ · uG(y)dz = 2ε

∫ 1

0

zx̂ · (x̂ + i ŷ) dz. (3.19)

Finally, the viscous correction for the geostrophic flow uG is governed by

iũG + 2 ẑ × ũG + n̂ · ∇p̃G =
∂2ũG

∂ξ 2
, (3.20)

n̂ · ∇ ×
(
n̂ × ũG

)
=

∂
(
n̂ · ũG

)
∂ξ

, (3.21)

subject to the boundary condition

n̂ ×
(
ũG + uG

)
= 0. (3.22)

The analysis of the geostrophic boundary flow is entirely analogous to that for ũ31

and, consequently, will not be discussed in detail.
On solving the boundary-layer equations (3.13) and (3.14) for ũ31 on the four

bounding walls of the channel, the solvability condition for (3.16) and (3.17), in
conjunction with the mass flux from the four viscous boundary layers, yields an
equation which determines the unknown complex coefficient C31:

8ε

π2
= − EC31

(
8π4

√
3

3

)

+ E1/2

{∫
S1

[(
iu∗

31 − 2 ẑ × u∗
31

)
z=0

·
(∫ ∞

0

ũ31dξ

)]
dS

+

∫
S2

[(
iu∗

31 − 2 ẑ × u∗
31

)
z=1

·
(∫ ∞

0

ũ31dξ

)]
dS

+

∫
S3

[(
iu∗

31 − 2 ẑ × u∗
31

)
y=0

·
(∫ ∞

0

ũ31dξ

)]
dS

+

∫
S4

[(
iu∗

31 − 2 ẑ × u∗
31

)
y=Γ

·
(∫ ∞

0

ũ31dξ

)]
dS

}
, (3.23)

where u∗
31 denotes the complex conjugate of u31 and

∫
Sj

f dS means the surface

integration with f evaluated on the bounding wall Sj . The surface integrations in
(3.23) are derived from the product of p∗

31, the complex conjugate of p31, and the
boundary mass flux. With the explicit expressions for ũ31 on the four bounding
surfaces, Sj , j = 1, 2, 3, 4, of the channel, which are given in (3.24), we can readily
evaluate the four integrations in (3.23) and, hence, determine the value of C31

analytically.
An analytical expression for the weakly precessing flow at exact resonance satisfying

the non-slip boundary condition is then obtained by inserting C31, ũ31 and u31 into
the asymptotic expansion (3.11):

u =
(
uG + ũG

)
− 96(ε/

√
E)eit

π4{9
√

2[(1 +
√

3) + (1 −
√

3)i] + 32
√

3π2
√

E}

×
{(

π sin
√

3πy

2
√

3

) {[
4 cos πz − exp

(
−

√
6(1 + i)z

2
√

E

)
− 3 exp

(
−

√
2(1 − i)z

2
√

E

)
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+ exp

(
−

√
6(1 + i)(1 − z)

2
√

E

)
+ 3 exp

(
−

√
2(1 − i)(1 − z)

2
√

E

)]
x̂

+ i

[
2 cos πz + exp

(
−

√
6(1 + i)z

2
√

E

)
− 3 exp

(
−

√
2(1 − i)z

2
√

E

)

− exp

(
−

√
6(1 + i)(1 − z)

2
√

E

)
+ 3 exp

(
−

√
2(1 − i)(1 − z)

2
√

E

)]
ŷ

}
− iπ sin πz

×
[
cos

√
3πy − exp

(
−

√
2(1 + i)y

2
√

E

)
+ exp

(
−

√
2(1 + i)(Γ − y)

2
√

E

)]
ẑ

}
, (3.24)

which is valid for moderate values of the Reynolds number Re for Γ =
√

3. Note that
the real part of (3.24) represents the required asymptotic solution for the precessing
flow. It is also worth noting that the amplitude of the vertical component in (3.24) is
comparable with that of the horizontal components.

In the asymptotic solution (3.24), the oscillatory geostrophic flow satisfying the non-
slip boundary condition can be derived by a similar procedure. The leading-order
expression takes the form

uG + ũG =
iε

2

{[
−2 + exp

(
−

√
6(1 + i)z

2
√

E

)
+ exp

(
−

√
2(1 − i)z

2
√

E

)

+ exp

(
−

√
6(1 + i)(1 − z)

2
√

E

)
+ exp

(
−

√
2(1 − i)(1 − z)

2
√

E

)]
x̂

+ i

[
− exp

(
−

√
6(1 + i)z

2
√

E

)
+ exp

(
−

√
2(1 − i)z

2
√

E

)

− exp

(
−

√
6(1 + i)(1 − z)

2
√

E

)
+ exp

(
−

√
2(1 − i)(1 − z)

2
√

E

)]
ŷ

+ 2

[
exp

(
−

√
2(1 + i)y

2
√

E

)
+ exp

(
−

√
2(1 − i)(Γ − y)

2
√

E

)]
x̂

}
eit , (3.25)

which is valid for any value of the aspect ratio Γ . Note that although the amplitude
of the geostrophic flow is much smaller than that of the principal inertial mode
at exact resonance, it is comparable to that of excitable inertial modes at non-
resonance. Moreover, the geostrophic flow may play a critical role in the nonlinear
interaction (see, for example, Kobine 1995; Kerswell 2002) leading to the transition to
a three-dimensional chaotic flow at large Reynolds numbers. To measure the strength
of the resonant precessing flow, we introduce the averaged kinetic energy, Ekin,
defined as

Ekin =
1

2π

∫ 2π

0

1

2V

[∫
V

|Re(u)|2dV

]
dt, (3.26)
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Figure 1. Contours of (a) ux , (b) uy and (c) uz (top) in a vertical yz plane for the asymptotic
solution computed from the analytical expression (3.24); contours of (d ) ux , (e) uy and (f ) uz

(middle) computed from the two-dimensional numerical analysis; contours of (g) ux , (h) uy

and (i ) uz (bottom) from direct three-dimensional numerical simulation. The parameters for

all three solutions are ε = 5 × 10−4 and Γ =
√

3 at E = 5 × 10−5.

where V denotes the volume of the channel. Using the analytical expressions (3.24)
and (3.25), we obtain

Ekin =
1

4

[
6144(ε/

√
E)2

π6{9
√

2[(1 +
√

3)] + 32
√

3π2
√

E}2 + 162(1 −
√

3)2]
+ ε2

]
, (3.27)

where the small contribution from the viscous boundary layers is not included. The
asymptotic solution represented by the analytical expressions (3.24) and (3.27) will be
compared directly to the result of two-dimensional and three-dimensional numerical
simulations.

The typical structure of the weakly precessing flow satisfying the non-slip boundary
condition, computed directly from the analytical expression (3.24), is illustrated in
figure 1(a–c) for ε = 5 × 10−4, Γ =

√
3 and E = 5 × 10−5. Also displayed in figure 1,

for the purpose of easy comparison, are the two-dimensional numerical solution
(figure 1d–f ) and the fully three-dimensional nonlinear simulation (figure 1g–
i ) obtained at exactly the same parameters. Evidently, there are no noticeable
differences among the three solutions obtained via three fundamentally different
methods. Furthermore, the kinetic energy Ekin computed from the expression (3.27)
for ε = 5.0 × 10−4 and Γ =

√
3 is Ekin =5.11 × 10−6 while the two-dimensional

numerical analysis yields Ekin =4.95×10−6 and our direct three-dimensional nonlinear
simulation gives Ekin =4.47 × 10−6 (the details of the numerics will be discussed in
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§ 4). For a larger Poincaré number ε = 10−3, the asymptotic expression (3.27) gives
rise to Ekin = 2.05 × 10−5 for E =5 × 10−5 while the corresponding two-dimensional
numerics yields Ekin = 1.98 × 10−5 and the three-dimensional nonlinear simulation
gives Ekin = 1.80 × 10−5.

A satisfactory quantitative agreement between the asymptotic analysis and the
two-dimensional and three-dimensional numerical simulation is achieved for small
and moderate Reynolds numbers. This not only validates the asymptotic analysis but
also confirms the crucial role played by viscosity at exact resonance. A comparison
between the asymptotic and numerical results also indicates that the asymptotic
solution (3.24) offers a reasonably good approximation to the fully nonlinear three-
dimensional simulation in the range 0 < E1/2Re < O(1), which will be discussed
further.

3.2. Double-inertial-mode resonance

Consider now a precessing channel with aspect ratio Γ = 1/
√

3 which is also at
exact resonance with the Poincaré forcing. In this case, while the principal inertial
mode u11 is predominant, the secondary resonant mode u33 makes a substantial
contribution and, hence, should be included. An asymptotic solution u describing a
weakly precessing flow for E � 1 and Γ = 1/

√
3 can be written in the form

u(y, z, t) =
[(

uG + ũG

)
+ (C11u11 + C33u33) + û + ũ

]
eit , (3.28)

p(y, z, t) =
[(

pG + p̃G

)
+ (C11p11 + C33p33) + p̂ + p̃

]
eit , (3.29)

where C11 and C33 are complex coefficients to be determined, the two inviscid resonant
inertial modes, (u11, p11) and (u33, p33), whose expressions are given by (3.7)–(3.10),
must be corrected by the viscous boundary layer ũ on the four bounding surfaces of
the channel, and the secondary interior flow, [û, p̂], where |û| � |C11u11 + C33u33|, is
induced by the viscous effects. The expression for the geostrophic flow, uG and ũG

given by (3.25), remains unchanged. Because the asymptotic analysis for the double-
mode resonance is largely analogous to that of the single-mode analysis, we shall
keep its discussion brief.

Upon inserting the asymptotic expansions (3.28) and (3.29) into (3.1) and (3.2), we
can derive two equations governing the viscous boundary layer,

iũ + 2 ẑ × ũ + n̂ · ∇p̃ =
∂2ũ
∂ξ 2

, (3.30)

n̂ · ∇ ×
(
n̂ × ũ

)
=

∂
(
n̂ · ũ

)
∂ξ

, (3.31)

subject to the boundary condition

n̂ ×
(
ũ + C11u11 + C33u33

)
= 0 (3.32)

on the bounding surface of the channel. The secondary interior flow [û, p̂] is governed
by

iû + 2 ẑ × û + ∇p̂ = E
(
C11∇2u11 + C33∇2u33

)
+ 2εz (x̂ + i ŷ) , (3.33)

∇ · û = 0, (3.34)

subject to the boundary condition

n̂ · û = E1/2

∫ ∞

0

n̂ · ∇ ×
(
n̂ × ũ

)
dξ (3.35)
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at the edge of the viscous boundary layers. The solvability condition for the
inhomogeneous partial differential equation (3.33) subject to the normal flux condition
on the four rigid walls gives rise to two complex equations for determining C11 and
C33:

8ε

π2
= −EC11

(
8π4

√
3

9

)

+ E1/2

{∫
S1

[(
iu∗

11 − 2 ẑ × u∗
11

)
z=0

·
(∫ ∞

0

ũdξ

)]
dS

+

∫
S2

[(
iu∗

11 − 2 ẑ × u∗
11

)
z=1

·
(∫ ∞

0

ũdξ

)]
dS

+

∫
S3

[(
iu∗

11 − 2 ẑ × u∗
11

)
y=0

·
(∫ ∞

0

ũdξ

)]
dS

+

∫
S4

[(
iu∗

11 − 2 ẑ × u∗
11

)
y=Γ

·
(∫ ∞

0

ũdξ

)]
dS

}
(3.36)

and

8ε

9π2
= −EC33

(
72π4

√
3
)

+ E1/2

{∫
S1

[(
iu∗

33 − 2 ẑ × u∗
33

)
z=0

·
(∫ ∞

0

ũdξ

)]
dS

+

∫
S2

[(
iu∗

33 − 2 ẑ × u∗
33

)
z=1

·
(∫ ∞

0

ũdξ

)]
dS

+

∫
S3

[(
iu∗

33 − 2 ẑ × u∗
33

)
y=0

·
(∫ ∞

0

ũdξ

)]
dS

+

∫
S4

[(
iu∗

33 − 2 ẑ × u∗
33

)
y=Γ

·
(∫ ∞

0

ũdξ

)]
dS

}
. (3.37)

It is worth noting that C11 and C33, in the double resonant case, are not coupled by
the effect of the viscous boundary layers and, hence, can be readily obtained after
solving (3.30) and (3.31) for the boundary flow ũ, and then performing the required
integration in (3.36) and (3.37). The substitution of C11 and C33 into the expansion
yields an analytical expression for the precessing flow at the double-mode resonance
at Γ = 1/

√
3:

u =
(
uG + ũG

)
+ V 11 + V 33, (3.38)

where the geostrophic flow (uG + ũG) is still given by (3.25) while V 11, in association
with the primary resonant mode u11, takes the form

V 11 = − 288(ε/
√

E)eit

π4{3
√

2[(7 + 3
√

3) + (7 − 3
√

3)i] + 32
√

3π2
√

E}

×
{(

π sin
√

3πy

2
√

3

) {[
4 cos πz − exp

(
−

√
6(1 + i)z

2
√

E

)
− 3 exp

(
−

√
2(1 − i)z

2
√

E

)

+ exp

(
−

√
6(1 + i)(1 − z)

2
√

E

)
+ 3 exp

(
−

√
2(1 − i)(1 − z)

2
√

E

)]
x̂
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+ i

[
2 cos πz + exp

(
−

√
6(1 + i)z

2
√

E

)
− 3 exp

(
−

√
2(1 − i)z

2
√

E

)

− exp

(
−

√
6(1 + i)(1 − z)

2
√

E

)
+ 3 exp

(
−

√
2(1 − i)(1 − z)

2
√

E

)]
ŷ

}
− iπ sin πz

×
[
cos

√
3πy − exp

(
−

√
2(1 + i)y

2
√

E

)
+ exp

(
−

√
2(1 + i)(Γ − y)

2
√

E

)]
ẑ

}
, (3.39)

and V 33, in association with the secondary resonant mode u33, is given by

V 33 = − 288(ε/
√

E)eit

π4{3
√

2[(7 + 3
√

3) + (7 − 3
√

3)i] + 288
√

3π2
√

E}

×
{(

π sin 3
√

3πy

54
√

3

){[
4 cos 3πz − exp

(
−

√
6(1 + i)z

2
√

E

)
− 3 exp

(
−

√
2(1 − i)z

2
√

E

)

+ exp

(
−

√
6(1 + i)(1 − z)

2
√

E

)
+ 3 exp

(
−

√
2(1 − i)(1 − z)

2
√

E

)]
x̂

+ i

[
2 cos 3πz + exp

(
−

√
6(1 + i)z

2
√

E

)
− 3 exp

(
−

√
2(1 − i)z

2
√

E

)

− exp

(
−

√
6(1 + i)(1 − z)

2
√

E

)
+ 3 exp

(
−

√
2(1 − i)(1 − z)

2
√

E

)]
ŷ

}
− i

π

27
sin 3πz

×
[
cos 3

√
3πy − exp

(
−

√
2(1 + i)y

2
√

E

)
+ exp

(
−

√
2(1 + i)(Γ − y)

2
√

E

)]
ẑ

}
.

(3.40)

Note that the secondary resonant mode, u33, makes about 5 % contribution towards
the amplitude of the precessing flow. The total kinetic energy of the flow including
the geostrophic flow is given by

Ekin =
512(ε/

√
E)2

π6

{
27

[3
√

2(7 + 3
√

3) + 32π2
√

3E]2 + 18(7 − 3
√

3)2

+
1

27[3
√

2(7 + 3
√

3) + 288π2
√

3E]2 + 486(7 − 3
√

3)2

}
+

ε2

4
, (3.41)

where the small contribution from the viscous boundary layers is excluded.
The analytical expressions (3.38) and (3.41) are compared directly to the

two-dimensional numerical analysis and fully three-dimensional direct numerical
simulations. The spatial structure of the precessing flow for Γ = 1/

√
3, computed

from expression (3.38), is displayed in figure 2(a–c) for ε = 5 × 10−4 and E = 5 × 10−5.
Also displayed in the figure are the two-dimensional numerical solution (figure 2d–
f ) and the direct three-dimensional nonlinear simulation (figure 2g–i ) obtained
at exactly the same parameters. There are no significant differences among the
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Figure 2. Contours of (a) ux , (b) uy and (c) uz in a vertical yz plane computed from the
asymptotic solution (3.38)–(3.40) (top); (d ) ux , (e) uy and (f ) uz for the two-dimensional
numerical solution (middle); (g) ux , (h) uy and (i ) uz for direct three-dimensional nonlinear

numerical simulation (bottom). The parameters for the three solutions are ε = 5 × 10−4,

Γ = 1/
√

3 and E = 5 × 10−5.
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three solutions obtained in completely different ways. Moreover, the kinetic energy,
Ekin, computed from the asymptotic expression (3.41) is Ekin = 2.28 × 10−5 for
ε = 5.0 × 10−4 and Γ =1/

√
3 at E =5 × 10−5 while the two-dimensional numerical

analysis yields Ekin = 2.13×10−5 and the direct three-dimensional nonlinear simulation
gives Ekin = 2.01 × 10−5. For a larger Poincaré number ε = 10−3, expression (3.41)
gives Ekin =9.15 × 10−5 for Γ = 1/

√
3 at E = 5 × 10−5 while the corresponding two-

dimensional numerics yields Ekin = 8.54 × 10−5 and the direct three-dimensional
nonlinear simulation produces a similar two-dimensional precessing flow with
Ekin = 8.16 × 10−5.

Our results again support the hypothesis that the viscous effect, which is primarily
from the viscous boundary layers, is essential in determining both the structure and
amplitude of weakly precessing flows at exact resonance. The asymptotic solution
given by (3.38)–(3.40) offers a reasonably accurate approximation to the direct fully
three-dimensional nonlinear simulation for the range 0 < Re < O(E−1/2). When
Re = O(E−1/2), i.e. ε ≈ 7 × 10−3 for E =5 × 10−5, however, the nonlinear effect
becomes important and leads to a fully three-dimensional precessing flow, which will
be discussed later.

3.3. Multiple-inertial-mode excitation at non-resonance

Finally, consider a precessing channel with non-resonant aspect ratios, i.e. |3nΓ −√
3j | � E1/2 for moderate integers n and j , where n is odd, at an asymptotically

small E. In this case, it is anticipated that a large number of inertial modes would be
excited by the precessional forcing. An asymptotic solution for a weakly precessing
flow, u and p, can be still separated, at leading order, into the interior flow and the
boundary-layer flow in the form

u(y, z, t) =

[(
uG + ũG

)
+

(∑
j,n

Cjnujn

)
+ û + ũ

]
eit , (3.42)

p(y, z, t) =

[(
pG + p̃G

)
+

(∑
j,n

Cjnpjn

)
+ p̂ + p̃

]
eit , (3.43)

where Cjn are unknown complex coefficients, uG and ũG are the interior and boundary
geostrophic flow, (ujn, pjn) represent inertial modes given by (3.7)–(3.10), ũ is the
viscous boundary layer while [û, p̂] represents the secondary interior flow with
|û| � |

∑
j,n Cjnujn|. Note that ujn and pjn in (3.42) and (3.43) are only a spatial

function of y and z that is given by (3.7)–(3.10) without including the temporal
dependence. We impose the non-slip boundary condition demanding that

n̂ ×
[

ũ +
∑
j,n

Cjnujn

]
= 0 (3.44)

on the bounding surface of the channel while the normal component of the mass flux
at the outer edge of the viscous boundary layer is

n̂ · û = E1/2

∫ ∞

0

n̂ · ∇ ×
(
n̂ × ũ

)
dξ. (3.45)
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Γ |C̄jn| |C̄jn| |C̄jn| |C̄jn|

1/
√

3 |C̄11| = 7.45 × 10−3 |C̄33| = 2.00 × 10−4 |C̄12| = 1.33 × 10−4 |C̄31| = 5.39 × 10−5

0.65 |C̄11| = 2.46 × 10−3 |C̄31| = 1.19 × 10−4 |C̄33| = 9.41 × 10−5 |C̄51| = 5.28 × 10−5

1 |C̄11| = 7.40 × 10−4 |C̄31| = 2.22 × 10−4 |C̄53| = 1.38 × 10−4 |C̄51| = 6.90 × 10−5
√

3 |C̄31| = 6.12 × 10−3 |C̄11| = 5.84 × 10−4 |C̄51| = 1.65 × 10−4 |C̄32| = 1.08 × 10−4

Table 1. Four largest coefficients, C̄jn, in the asymptotic expansion (3.42) and (3.43) computed
numerically from the solvability condition (3.48) for several different values of Γ with
E = 5 × 10−5 and ε = 5 × 10−4.

Substituting (3.42) and (3.43) into (3.1) and (3.2) and making use of (3.7)–(3.10), the
secondary interior flow is described by

iû + 2 ẑ × û + ∇p̂ = i
∑
j,n

[
2nΓ − (j 2 + n2Γ 2)1/2

(j 2 + n2Γ 2)1/2

]
Cjnujn

+ E
∑
j,n

∇2
(
Cjnujn

)
+ 2εz (x̂ + i ŷ) , (3.46)

∇ · û = 0. (3.47)

The solvability condition can be derived by multiplying (3.46) by u∗
jn, the complex

conjugate of ujn, making use of the asymptotic matching condition (3.45) and
integrating the resulting equation over the channel, which yields a system of algebraic
equations for Cjn

Cjn

{
i
[
(j 2 + n2Γ 2)1/2 − 2nΓ

]
(j 2 + n2Γ 2)1/2

+
π2(j 2 + n2Γ 2)E

Γ 2

}∫
V

|ujn|2 dV

+ E1/2

∫
S

p∗
jn

[∫ ∞

0

n̂ · ∇ ×
(
n̂ × ũ

)
dξ

]
dS = 2ε

∫
V

zu∗
jn · (x̂ + i ŷ) dV, (3.48)

where n= ±1, ±3, . . . , j = 1, 2 . . . and p∗
jn denotes the complex conjugate of pjn. The

general solvability condition (3.48) determines the value of coefficients Cjn, which is
valid for asymptotic solutions for E � 1 at any aspect ratio Γ . Note that because the
mass flux from the viscous boundary layers couples all the inertial modes together,
the algebraic equations resulting from (3.48) must be solved numerically. Plotted with
many solutions obtained for different values of Γ in the range 0 < Γ � 2, figure 3
shows kinetic energies of the precessing flows as a function of Γ for rotating channels
with four different values of ε at E = 5 × 10−5. Table 1 gives values of the four largest
coefficients |C̄jn| defined as

|C̄jn| = |Cjn|
[∫

V

|ujn|2dV

]1/2

,

which is introduced because ujn given by (3.8)–(3.10) is not normalized. At the

principal resonance with Γ =1/
√

3, the precessing flow is dominated by the inertial
mode u11 with u33 making a small contribution, while the flow at the second resonance
with Γ =

√
3 is dominated by the inertial mode u31. Even for a slight departure from

the principal resonance – where the kinetic energy of the flow for ε = 5 × 10−4 drops
from its resonant value Ekin = 2.3×10−5 at Γ = 1/

√
3 to Ekin = 2.4×10−6 at Γ = 0.65 –

the leading order of the precessing flow is still dominated by u11. For the non-resonant
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Figure 3. Kinetic energies of the precessing flow scaled by ε−1, resulting from solutions of
the solvability condition (3.48), are plotted as a function of the aspect ratio Γ , in the range
0 < Γ � 2, in rotating channels at E =5 × 10−5 for four different values of ε. The major

resonances take place at Γ = 1/
√

3 and Γ =
√

3.

case Γ =1, however, the character of the precessing flow is quite different and
several inertial modes that have comparable amplitudes are excited by the precessing
forcing. It is significant to note that the number of inertial modes ujn required in the
asymptotic expansion (3.42) and (3.43) is determined by the aspect ratio Γ . This is why
simple, explicitly analytical solutions like (3.24) are obtainable only for the resonant
cases.

For any non-resonant aspect ratio with |3nΓ −
√

3j | � E1/2, however, the viscous
effect in (3.48), represented by the terms proportional to E and E1/2, can safely
be neglected. This approximation leads to a particularly simple system in which all
inertial modes are completely decoupled. After carrying out the relevant integrations
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in (3.48), we find that

Cjn =

[
i8Γ εj 2

n2π4(j 2 + n2Γ 2)

]{
[1 − (−1)j ][1 − (−1)n]

[(j 2 + n2Γ 2)1/2 − nΓ ][(j 2 + n2Γ 2)1/2 − 2nΓ ]

}
. (3.49)

Although the viscous boundary layer ũ, in contrast to the resonant cases, is not needed
in the process of determining Cjn, it is still required for describing a precessing flow
that satisfies the non-slip boundary condition. An asymptotic solution with the non-
slip boundary condition for a non-resonant channel can be written in the form

u = ũ +
(
uG + ũG

)
+

∑
j,n

[
4εj 2

n2π3(j 2 + n2Γ 2)1/2

]

×
{

[1 − (−1)j ][1 − (−1)n]

[(j 2 + n2Γ 2)1/2 − nΓ ][(j 2 + n2Γ 2)1/2 − 2nΓ ]

}
×

{
− (j 2 + n2Γ 2)1/2

j
sin

jπy

Γ
cos nπz

[
x̂ sin t + ŷ

nΓ cos t

(j 2 + n2Γ 2)1/2

]
+ ẑ

[
cos

jπy

Γ
sin nπz cos t

]}
, (3.50)

which is valid for an asymptotically small E with non-resonant aspect ratios Γ .
Note that the analytical expression (3.50) is non-singular because of the non-resonant
condition. Of course, the summation must be truncated in any practical computation.
It is found that the summation (3.50) with j � O(10) and |n| � O(10) would typically
yield an accurate approximation within 1 % error. In the asymptotic solution (3.50),
while the geostrophic flow (uG + ũG) is still given by (3.25), the viscous boundary
layer ũ is given by

ũ = −
∑
j,n

i2εj 2[1 − (−1)j ][1 − (−1)n]eit

n2π3(j 2 + n2Γ 2)[(j 2 + n2Γ 2)1/2 − nΓ ][(j 2 + n2Γ 2)1/2 − 2nΓ ]

×
{

(−x̂ + i ŷ)
[

j (j 2 + n2Γ 2)1/2

(j 2 + n2Γ 2)1/2 + nΓ
sin

jπy

Γ

]
exp

(
−

√
6(1 + i)z

2
√

E

)

− (x̂ + i ŷ)
[

j (j 2 + n2Γ 2)1/2

(j 2 + n2Γ 2)1/2 − nΓ
sin

jπy

Γ

]
exp

(
−

√
2(1 − i)z

2
√

E

)

+ (−1)n(−x̂ + i ŷ)
[

j (j 2 + n2Γ 2)1/2

(j 2 + n2Γ 2)1/2 + nΓ
sin

jπy

Γ

]
exp

(
−

√
6(1 + i)(1 − z)

2
√

E

)

− (−1)n(x̂ + i ŷ)
[

j (j 2 + n2Γ 2)1/2

(j 2 + n2Γ 2)1/2 − nΓ
sin

jπy

Γ

]
exp

(
−

√
2(1 − i)(1 − z)

2
√

E

)
+ ẑi

[
2(j 2 + n2Γ 2)1/2

]
sin nπz

×
[
exp

(
−

√
2(1 + i)y

2
√

E

)
+ (−1)j exp

(
−

√
2(1 + i)(Γ − y)

2
√

E

)]}
. (3.51)

It should be mentioned that we have carefully compared the numerical solution for
(3.48), which contains all the viscous terms, with the explicit analytical solution (3.50)
for E � 1: the difference between them is negligibly small at a non-resonant Γ . On
the basis of the explicit asymptotic solution (3.50), we can also derive an analytical
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Figure 4. Contours of (a) ux , (b) uy and (c) uz in a vertical yz plane from the non-resonant
asymptotic solution (3.50) (top); (d ) ux , (e) uy and (f ) uz from the two-dimensional numerical
analysis (middle); (g) ux , (h) uy and (i ) uz from the three-dimensional direct simulation

(bottom). The parameters are ε = 5 × 10−4, Γ = 1 and E =5 × 10−5.

expression for the kinetic energy of the precessing flow

Ekin =
ε2

4
+

∑
j,n

8ε2[1 − (−1)j ][1 − (−1)n]

n4π6[(j 2 + n2Γ 2)1/2 − nΓ ]2[(j 2 + n2Γ 2)1/2 − 2nΓ ]2
, (3.52)

where the contribution from the boundary layers is again neglected.
For a given ε and non-resonant Γ , we can compute the spatial structure of a

precessing flow satisfying the non-slip boundary condition from expression (3.50),
which is shown in figure 4(a–c) for ε = 5 × 10−4 and Γ =1 at E = 5 × 10−5. It
can be then directly compared with the two-dimensional numerical solution shown
in figure 4(d–f ) and the three-dimensional nonlinear simulation in figure 4(g–i ) at
exactly the same parameters. There are no significantly noticeable differences in the
spatial structure of the three solutions. Furthermore, kinetic energies, Ekin, computed
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ε Re Ekin(Asymptotic) Ekin(2D numerics) Ekin(3D simulation)

10−4 2 × 100 8.666 × 10−9 8.670 × 10−9 8.616 × 10−9(2D flow)
5 × 10−4 1 × 101 2.167 × 10−7 2.168 × 10−7 2.152 × 10−9(2D flow)
10−3 2 × 101 8.666 × 10−7 8.670 × 10−7 8.603 × 10−7(2D flow)
5 × 10−3 1 × 102 2.167 × 10−5 2.168 × 10−5 2.151 × 10−5 (2D flow)
10−2 2 × 102 8.666 × 10−5 8.670 × 10−5 8.563 × 10−5(2D flow)
5 × 10−2 1 × 103 2.167 × 10−3 2.168 × 10−3 2.189 × 10−3(2D flow)
7.5 × 10−2 1.5 × 103 (3D flow)

Table 2. Kinetic energies, Ekin, computed from the asymptotic expression (3.52), along with
the corresponding values calculated from the two-dimensional (2D) numerical analysis and
direct three-dimensional (3D) nonlinear numerical simulation for Γ = 1 and E = 5 × 10−5.

from the analytical formula (3.52) for several different values of ε at Γ = 1 are given
in table 2, along with the corresponding values calculated from the two-dimensional
and three-dimensional numerical analyses. Evidently, the asymptotic solution (3.50)
offers an accurate approximation to the fully three-dimensional nonlinear simulation
up to Re � O(103), which corresponds to ε = 5 × 10−2 for E = 5 × 10−5. When
Re increases further, the precessing flow becomes fully three-dimensional and the
asymptotic solution (3.50) becomes physically irrelevant.

4. Numerical simulation
4.1. Two-dimensional linear numerical analysis

We first undertake a linear numerical analysis that is valid for any value of the Ekman
number E and any size of the aspect ratio Γ . The primary purpose of the analysis
is to check the accuracy of our asymptotic analysis valid only for E � 1. Because
the boundary condition is assumed to be no-slip, the numerical solution in a channel
is quite complicated: the method of separation of variables fails and, consequently,
a set of partial differential equations must be solved numerically. In the numerical
analysis, we may expand a two-dimensional velocity in terms of two potentials, Ψ

and Φ , in the form

u = {∇ × [Ψ (y, z)x̂] + Φ(y, z)x̂} eit , (4.1)

the real part of which will be taken as a solution of the problem. Substituting
expression (4.1) into (3.1) and then applying x̂ and x̂ · ∇×, we can derive two
independent partial differential equations governing a weakly precessing flow:

2εz = −2
∂Ψ

∂z
+

[
i − E

(
∂2

∂y2
+

∂2

∂z2

)]
Φ, (4.2)

2iε = +2
∂Φ

∂z
+

[
i − E

(
∂2

∂y2
+

∂2

∂z2

)](
∂2

∂y2
+

∂2

∂z2

)
Ψ. (4.3)

The no-slip boundary condition in terms of Ψ and Φ becomes

Ψ = Φ =
∂Ψ

∂z
= 0 at z = 0, 1, (4.4)

Ψ = Φ =
∂Ψ

∂y
= 0 at y = 0, Γ. (4.5)
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Equations (4.2) and (4.3) are solved by making use of the Galerkin-type expansion:

Φ(y, z) =

N∑
l=0

N∑
k=0

Φ̂kl

[
(1 − ẑ2) Tl(ẑ)

] [
(1 − ŷ2) Tk(ŷ)

]
, (4.6)

Ψ (y, z) =

N∑
l=0

N∑
k=0

Ψ̂kl

[
(1 − ẑ2)2 Tl(ẑ)

] [
(1 − ŷ2)2 Tk(ŷ)

]
, (4.7)

where N is a truncation parameter taken to be of O(100), ŷ =(2y/Γ −1), ẑ = (2z−1),
Ψ̂kl and Φ̂kl are complex coefficients and Tl(x) denotes the standard Chebyshev
functions. Substituting (4.6) and (4.7) into (4.2) and (4.3), we obtain a system of
algebraic equations for the unknown coefficients. The resulting equations are then
solved numerically by an iterative scheme to determine the coefficients, and hence the
velocity potential Φ and Ψ of a precessing flow.

An extensive numerical computation is carried out over a wide range of E, ε and
Γ , some of which are shown in figures 1, 2 and 4 as well as in table 2. We can
draw two conclusions from the two-dimensional numerical analysis: (i) the three
different asymptotic expressions – (3.24) for Γ =

√
3, (3.38) for Γ = 1/

√
3 and (3.50)

for non-resonant Γ – provide an accurate approximation to the numerical solutions
for sufficiently small Ekman number with E � O(10−3) and (ii) consistent with the
result of the asymptotic analysis, the amplitude of weakly precessing flows for a given
ε and E reaches an overall maximum at the double-mode resonance when Γ = 1/

√
3.

How and when a precessionally driven two-dimensional flow becomes fully three-
dimensional at a large Reynolds number remains an open question that must be
answered by a direct three-dimensional nonlinear simulation of the problem.

4.2. Fully three-dimensional nonlinear simulation

In comparison to the plane-geometry problem (Mason & Kerswell 2002), which
permits periodic boundary conditions in both the x- and y-directions, the precessional
problem in channel geometry with the non-slip boundary condition is numerically
more challenging. It would be difficult, because of the existence of the two vertical
sidewalls, to employ the widely used pseudo-spectral method with Fourier series.
We choose to tackle the fully three-dimensional, nonlinear problem by employing a
second-order finite-difference method based on the Chorin-type projection scheme
(Chorin 1968), which decouples the momentum and continuity equations. The
projection scheme leads to the time discretization of (2.4) and (2.5) in the form

(um − un)

�t
= E∇2un − un · ∇un − 2 ẑ × un + 2ε (z + un×) (x̂ cos tn − ŷ sin tn) , (4.8)

where un represents the velocity at the nth time step t = tn while um denotes the
velocity at an intermediate time between t = tn and t = tn+1. The solution of (4.8) gives
rise to the intermediate velocity um, which is then used to solve the Poisson equation
for the pressure pn+1 at the (n + 1)th time step t = tn+1,

∇2pn+1 =
1

�t
∇ · um. (4.9)

After solving (4.9), we can readily compute the velocity field un+1 at t = tn+1 by

un+1 = um − �t∇pn+1. (4.10)

No spatial symmetries are imposed on our direct three-dimensional numerical
simulation, which usually starts with an arbitrary three-dimensional initial condition,
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even though the nonlinear solution for moderate values of Re is not only two-
dimensional (independent of x) but also possesses spatial symmetries in the y- and
z-directions. Our numerical method is largely similar to that used by Wu & Roberts
(2008) although their time integration is a third-order scheme while our scheme is of
second order.

In addition to the physical parameters like the Ekman number E and the
Poincaré number ε, a new parameter enters into the three-dimensional nonlinear
simulation: the size of the computational box defined by the upper and lower
non-slip surfaces at z = 0, 1, by the two vertical non-slip sidewalls at y = 0, Γ and
by the periodic boundary condition at x =0, L, where L may be regarded as an
additional parameter for the three-dimensional simulation. A thin computational box
with L � 1 is computationally inexpensive, but it may be incapable of capturing the
crucial spatial scales of three-dimensional instabilities; a very wide box with L � 1,
on the other hand, is computationally too expensive or may be unnecessary in the
understanding of key nonlinear dynamics. As a balance between the computational
cost and the essential physics, we choose L =1, which equivalently imposes the
periodic boundary conditions u(x = 0) = u(x = 1) and p(x = 0) = p(x = 1), for all our
direct three-dimensional nonlinear simulation.

While our three-dimensional numerical code was carefully validated by comparing
with both the constructed exact solution and the asymptotic solutions, the accuracy
of the three-dimensional simulation was also carefully checked by computing the
nonlinear solutions at exactly the same parameters but using different spatial and
temporal resolutions. Note that we do not anticipate, physically and mathematically,
boundary-layer-type structure in the x-direction along the channel, implying that
|∂/∂x| � |∂/∂z| and |∂/∂x| � |∂/∂y|. Our primary concern is with the viscous
boundary layers located on the four bounding surfaces of a channel, in connection
with the spatial resolution in the y- and z-directions. It is found that there are no
significant differences between the nonlinear solutions simulated with either 300 or
200 grids in the z-direction for E � 5 × 10−5. Consequently, we have typically used,
for example at Γ =

√
3, the spatial resolution with a grid system [50 × 350 × 200]

covering 0 � x � 1, 0 � y � Γ and 0 � z � 1 for our direct three-dimensional
simulations, providing a reasonable numerical accuracy for the moderately strong
nonlinear solutions presented in this paper.

The finite-difference equations (4.8)–(4.10), treated as an initial-value problem, are
integrated forward in time, starting from an arbitrary three-dimensional flow, until
the numerical solution attains an oscillatory or a chaotic state, usually taking up
to O(102) non-dimensional time units. While a three-dimensional simulation for a
two-dimensional weakly nonlinear flow is, because of relatively large �t , usually
less expensive, simulating a strongly nonlinear flow, however, would typically take a
three-week runtime to integrate (4.8)–(4.10), with �t = O(10−4), to the O(102) time
units using 60 processors (each processor with 3612 MHz) on an IBM parallel
computer.

Consider first the exact resonance for Γ =1/
√

3 at which the strongest precessing
flow occurs for a given ε. The primary objectives of our direct three-dimensional
nonlinear simulation are twofold: to check the validity of the asymptotic expression
(3.38) for moderate Reynolds numbers and to identify the transition regimes from two-
dimensional laminar flow to three-dimensional turbulence for large Reynolds numbers
at fixed small Ekman number E = 5 × 10−5. For a small or moderate value of Re,
although a numerical simulation starts with an arbitrary three-dimensional initial
flow, the final solution after the transient period of the simulation always reaches an
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Figure 5. Kinetic energies, Ekin, of the two-dimensional precessing flow resulting from
three-dimensional direct numerical simulation are plotted against time for several different

values of ε: (a) for the strongly resonant case with Γ = 1/
√

3 at E =5 × 10−5 and (b) for the
non-resonant case with Γ = 1 at E = 5 × 10−5.

x-independent state, i.e. ∂u/∂x = 0 and ∂p/∂x = 0. Different simulations with various
values of L, either L > 1 or L < 1, confirm that the x-independent nonlinear solution
is the only physically realizable flow for small and moderate Reynolds numbers. The
time dependence of the two-dimensional precessing flows resulting from the three-
dimensional nonlinear simulation is displayed in figure 5(a) with Γ = 1/

√
3. Because

the initial transient period of a nonlinear simulation depends upon an arbitrary initial
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condition and, hence, is of less significance, only the final state of the simulation is
shown in the figure. A typical structure of the weakly precessing flow obtained
from the three-dimensional simulation is depicted in figure 2(g–i ), along with the
asymptotic solution given by (3.38). The result of the three-dimensional simulation
shows a satisfactory agreement with the analytical expressions (3.38) and (3.41) in
the approximate range (ReE1/2) < O(1). This is consistent with the scaling provided
by the asymptotic expression (3.38). The amplitude of the resonant precessing flow
with Γ =1/

√
3 is |u| ∼ ε/E1/2, giving rise to the nonlinear term |u · ∇u| ∼ ε2/E

and the Coriolis force | ẑ × u| ∼ ε/E1/2. It follows that, when the rotational effect
is dominant, | ẑ × u| > |u · ∇u| or 0 < (ReE1/2) < O(1), we would anticipate that
the asymptotic solution (3.24) provides a reasonably good approximation and that
the precessing flow remains two-dimensional. It reinforces the view that the viscous
effect, which is primarily linked with the viscous boundary layers, determines the
key property of weakly precessing flows at exact resonance. A large effort is then
made to identify the critical value of Re at which the two-dimensional precessing flow
becomes fully three-dimensional in a channel with Γ = 1/

√
3. The scaling analysis

suggests that the transition should occur when the nonlinear effect becomes significant
at ReE1/2 = O(1). By carrying out many three-dimensional simulations at different
values of Re, we found that the instabilities that introduce the x-dependence and lead
to a fully three-dimensional precessing flow take place at ε ≈ 7.0×10−3, or ReE1/2 ≈ 1
for Γ =1/

√
3 and E = 5 × 10−5. Figure 6(a) shows the time dependence of the three-

dimensional precessing flows for three different Re, where the transient behaviour is
not displayed. In the range 1.5 × 102 � Re � 5 × 102, the nonlinear precessing flow
is fully three-dimensional but remains largely laminar. A long time-scale temporal
modulation can be clearly seen in figure 6(a), while the spatial modulation in the
x-direction is shown in figure 7 for ε = 7.5×10−3 or Re =1.5×102. When Re increases
to about Re = 103, however, the laminar three-dimensional flow breaks down, leading
to the small-scale disordered turbulence shown in figure 8. In short, three different
regimes are identified with increasing Re: (i) two-dimensional oscillatory and laminar
flow that is in quantitative agreement with the analytical expression (3.38), (ii) three-
dimensional spatio-temporally modulated three-dimensional precessing flow and (iii)
small-scaled disordered turbulence.

Finally, we consider a typical non-resonant case with Γ = 1 also at E = 5 × 10−5.
In comparison with the resonant case Γ = 1/

√
3, our simulations starting with

an arbitrary three-dimensional flow show that the precessing flows remain two-
dimensional, i.e. ∂u/∂x = 0; ∂p/∂x =0, within a much larger range 0 < Re � 103. A
satisfactory quantitative agreement between the three-dimensional simulation and the
analytical expression (3.50) is achieved for 0 < Re � 103, which is shown in table 2,
where the physically preferred flow is two-dimensional, oscillatory and laminar. While
the time-dependence of the two-dimensional oscillatory flow resulting from the three-
dimensional simulation is shown in figure 5(b) for Γ = 1 and E = 5×10−5, the typical
spatial structure of the flow obtained from the three-dimensional nonlinear simulation
is displayed in figure 4(g–i ), along with the asymptotic solution given by (3.49). An
extensive three-dimensional simulation for different values of ε, which is shown in
figure 6(b), indicates that the two-dimensional precessing flow becomes unstable
to three-dimensional instabilities at Re ≈ 1.5 × 103 (ε = 7.5 × 10−2), in contrast
to Re ≈ 1.5 × 102 in the resonant case Γ = 1/

√
3. The strongly precessing flow

at Re =1.5 × 103 becomes fully three-dimensional and is spatially and temporally
modulated. Its temporal modulation is shown in figure 6(b) while the spatial
modulation in the x-direction is depicted in figure 9. When ε increases further
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Figure 6. Kinetic energies, Ekin, of the three-dimensional precessing flow from the
three-dimensional direct numerical simulation are plotted against time (a) for the resonant case

with Γ = 1/
√

3 at E = 5 × 10−5 and (b) for the non-resonant case with Γ = 1 at E =5 × 10−5.

to 5 × 10−1, i.e. Re = 104, the precessing flow breaks down, leading to the small-scale
disordered flow which is shown in figure 10.

There exist two major differences between the non-resonantly and resonantly
precessing flows at exactly the same precessional rate. For resonantly precessing
flows, the effect of viscosity, via both the Ekman boundary layers and interior viscous



Precession in narrow annular channels 141

0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.2

0.4

0.2 0.4 0.6 0.8 1.00

y

(a) (b)

0.2

0.4

0.2 0.4 0.6 0.8 1.00

(c)

0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.2

0.4

0.2 0.4 0.6 0.8 1.00

y

(d) (e)

0.2

0.4

0.2 0.4 0.6 0.8 1.00

(f)

0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.2

0.4

0.2 0.4 0.6 0.8 1.00

y

(g) (h)

0.2

0.4

0.2 0.4 0.6 0.8 1.00

(i)

x x x

Figure 7. Snapshots of a three-dimensional precessing flow at three different instants in a
horizontal xy plane. Contours of ux at z = 1/4 are displayed in (a)–(c), contours of uy at
z = 1/4 are displayed in (d )–(f ), and contours of uz at z = 1/2 are displayed in (g)–(i ). The

parameters for this nonlinear solution are ε = 7.5 × 10−3 and Γ = 1/
√

3 at E = 5 × 10−5.
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Figure 8. Snapshots of three-dimensional solutions in a horizontal xy plane at three different
instants. Contours of ux at z =1/4 are displayed in (a)–(c), contours of uy at z = 1/4 are
displayed in (d )–(f ), and contours of uz at z =1/2 are displayed in (g)–(i ). The parameters for

this nonlinear solution are ε =5 × 10−2 and Γ = 1/
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3 at E =5 × 10−5.
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Figure 9. Snapshots of a three-dimensional precessing flow at three different instants in a
horizontal xy plane. Contours of ux at z = 1/4 are displayed in (a)–(c), contours of uy at
z = 1/4 are displayed in (d )–(f ), and contours of uz at z = 1/2 are displayed in (g)–(i ). The
parameters for this nonlinear solution are ε =7.5 × 10−2 and Γ = 1 at E = 5 × 10−5.

effects, plays a critical role while, for non-resonantly precessing flows, the effect
of viscosity is of secondary importance. The amplitude of the precessing flow at
resonance is O(ε/E1/2) with E � 1 while the amplitude of a non-resonant precessing
flow is O(ε). It suggests the different underlying dynamics which is explicitly exhibited
by the asymptotic expressions (3.38) and (3.50). Because the amplitude of the flow
is dramatically enhanced by resonance, the critical value of ε at which the three-
dimensional turbulence sets in is hugely different between the non-resonantly and
resonantly precessing flows.

5. Summary and remarks
We have studied, through both asymptotic analysis and numerical simulation,

precessionally driven flows in a narrow annular channel that rotates rapidly about its
axis of symmetry with angular velocity Ω that itself precesses slowly about an axis
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Figure 10. Snapshots of a three-dimensional precessing flow at three different instants.
Contours of ux in a horizontal xy plane at z =1/4 are displayed in (a)–(c), contours of
uy at z = 1/4 are displayed in (d )–(f ), and contours of uz at z = 1/2 are displayed in (g)–(i ).

The parameters for this nonlinear solution are ε =5 × 10−1 and Γ = 1 at E = 5 × 10−5.

fixed in an inertial frame. Not only is this precessional problem experimentally
realizable (Davies-Jones & Gilman 1971) but it also retains the mathematical
simplicity and clarity of plane geometry. The essential asymptotic idea used for
this study is in some ways similar to that developed for the convection problem in
rotating fluid spheres (Zhang & Liao 2004). Our asymptotic analysis reveals that,
depending upon the aspect ratio Γ of a channel, there exist three different regimes of
precessing flows for which we have derived the three asymptotic expressions. At the
single-inertial-mode resonance with Γ =

√
3 for which the contribution from higher

inertial modes is insignificant and the viscous effect in connection with the viscous
boundary layer largely controls the precessing flow, a simple analytical solution
satisfying the non-slip boundary condition is given by the expression (3.24). At
the double-inertial-mode resonance with Γ = 1/

√
3 for which the viscous effect also

plays an essential role in controlling the amplitude of the precessing flow, a slightly
more complicated expression satisfying the non-slip boundary condition is given by
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(3.38). For other values of Γ , non-resonant precessing flows are described by the
analytical expression (3.50) satisfying all the required non-slip boundary conditions
in which, however, the viscous effect no longer plays a critical role in determining the
character and amplitude of the precessing flow. A satisfactory agreement between the
three asymptotic solutions and the linear/nonlinear numerical simulation has been
achieved for small and moderately large Reynolds numbers at an asymptotically
small E.

Although it is inappropriate to make a direct comparison between the precessionally
driven flows taking place in a precessing channel and in a precessing sphere (Roberts
& Stewartson 1965; Busse 1968), there exists a close analogy between the two
precessing systems: the underlying dynamics/mechanism is, in many respects, similar.
In the body (or mantle) frame of reference, the principal resonant mode in spherical
geometry, [pspin, uspin], takes the form

pspin = Cspinr
2 cos θ sin θ cos (φ + t) , (5.1)

r̂ · uspin = 0, (5.2)

θ̂ · uspin = Cspinr sin (φ + t) , (5.3)

φ̂ · uspin = Cspinr cos θ cos (φ + t) , (5.4)

where Cspin denotes the amplitude of the mode, which is usually referred to as the
spin-over mode (or the Poincaré flow) (Greenspan 1968), where uspin is its three-
dimensional velocity in spherical polar coordinates (r, θ, φ) with θ = 0 at the axis

of rapid rotation Ω ẑ and with the corresponding unit vectors (r̂, θ̂ , φ̂). Note that,
in the body frame of reference, the spin-over mode uspin is just the lowest order of
spherical inertial modes with the azimuthal wavenumber m = 1 (Zhang et al. 2001)
which satisfies

2iσspin uspin + 2 ẑ × uspin + ∇pspin = 0, (5.5)

∇ · uspin = 0, (5.6)

where σspin = 1/2 is the half-frequency of the spin-over mode, subject to the condition
of vanishing normal flow

n̂ · uspin = 0 (5.7)

at the bounding surface of the sphere. That is, uspin satisfies exactly the same equations
and the same inviscid boundary condition as the principal resonant mode u11 in
channel geometry. In other words, the principal resonant mode u11 – the lowest order
of channel inertial modes – represents the counterpart of spin-over mode uspin . In
spherical geometry, it is the thin spherical Ekman boundary layer that determines
the amplitude of uspin with Cspin = O(ε/E1/2) (Roberts & Stewartson 1965), while
in channel geometry it is also the Ekman boundary layers on the four walls that
determine the amplitude of the principal mode u11 with C11 = O(ε/E1/2). In spherical
geometry, the spin-over mode, which interacts with other inertial modes nonlinearly,
becomes unstable to three-dimensional instabilities at sufficiently large ε (Kerswell
1993; Tilgner & Busse 2001). In channel geometry, the principal mode u11, which also
interacts with higher-order inertial modes nonlinearly, becomes unstable to three-
dimensional instabilities at sufficiently large ε. An important difference between the
asymptotic solutions in channel and spherical geometries is perhaps the existence of
the singular behaviour at critical latitudes in the spherical viscous boundary layer
(Roberts & Stewartson 1965) which is absent from the channel viscous boundary
layers (where the singularities are lost in the corners of the channel where the boundary
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layers meet). This absence may be attributable to the result that the simple asymptotic
solutions in a precessing channel provide a reasonably accurate approximation to the
fully nonlinear three-dimensional simulation even for moderately large Reynolds
numbers.

An interesting nonlinear phenomenon found in the strongly resonant precessing flow
in a precessing channel is a sudden breakdown of the large-scale three-dimensional
laminar flow to small-scale disordered turbulence. Our asymptotic and numerical
analysis suggests the following transition scenario at exact resonance: the physically
realizable flow in 0 < Re < O(E−1/2) is two-dimensional, oscillatory and laminar,
which becomes unstable to three-dimensional instabilities at Re = O(E−1/2) leading
a spatio-temporally modulated three-dimensional flow; when Re increases slightly
after the onset of the three-dimensional instability, the three-dimensional modulated
flow suddenly collapses towards small-scaled disordered turbulence. Similar sudden
breakdowns of the precessing flows were observed in various precessional experiments
for spherical and cylindrical geometries (Gans 1970; Malkus 1989; Eloy, Le Gal & Le
Dizs 2003). The three-dimensional instabilities in a precessing channel may be caused
by a similar mechanism to a triadic resonance discussed in a precessing cylinder
where either the geostrophic mode in an infinite cylinder (Mahalov 1993) or the
principal resonant mode in a finite cylinder (Kerswell 2002; Lagrange et al. 2008)
resonates with two cylindrical inertial modes. However, a further theoretical study that
includes explicitly the nonlinear interaction between the geostrophic mode and specific
inertial modes is required to elucidate the precise mechanism of the instabilities in a
precessing channel. With its rich dynamics demonstrated by our asymptotic analysis
and numerical experiments, this opens an exciting new line of research of a laboratory
experimental study on precessionally driven flows in a precessing annular channel.
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